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The electrochemical properties have different or reverse trend with decreasing radius dependent on the synthetic methods and
thermodynamic states of nanoparticles. Here, a size-dependent thermodynamic model was derived to describe the thermodynamic
equilibrium state of binary solid solution nanoparticles. This model combined the capillary equation with the Gibbs-Duhem
equation and the Butler-Volmer equation, can simultaneously analyze nanoparticle size, stresses, solute segregation and
electrochemical properties in solid solution nanoparticles. Then, spherical nanoparticles of CuZn binary solid solution were
studied. With decreasing CuZn nanoparticle radius, the anodic current density decreased, whereas the equilibrium potential
increased, meaning that the stability was enhanced. With increasing apparent Zn concentration, the anodic current density and the
equilibrium potential difference between the CuZn nanoparticle components increased, implying that the selective corrosion of Zn
atoms enhanced. These results were qualitatively consistent with some experimental observations.
© 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ab6ff1]
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The most remarkable characteristic of nanomaterials is that the
surface-to-volume ratio of these materials is much larger than that of
bulk materials. The surface plays a key role in many thermodynamic
processes, including electrochemical and chemical responses. Many
researchers1–7 have investigated the surface stress/energy of solid
materials and have concluded that the surface stress is size
dependent, especially for nanoscale materials. Dingreville et al.6

concluded that the overall elastic behaviors of structural elements
(particles, wires, and films) are size dependent. Zhang et al.8

proposed an eigenstress model and showed that the initial deforma-
tion, surface energy density and surface stress are all dependent on
the nanoscale film thickness, whereas surface elastic constants are
independent of this thickness. Although the size dependence is
negligible for conventional structural elements, this dependence will
be significant for samples with at least one dimension on the
nanoscale.

Moreover, many studies have verified that the solubility of solute
atoms in nanoscale materials is size dependent.9–14 The Au
nanoparticles with 5 nm diameter showed an uptake of carbon to
concentrations exceeding the bulk solubility by more than four
orders of magnitude.12 Meethong et al.15 found that at room
temperature, the Li solid solution limit in the heterosite phase
LiyFePO4 increased as the particle diameter decreased from 113 nm
to 42 nm and 34 nm, whereas the corresponding limit in the
triphylite phase Li1−xFePO4 decreased. The authors attributed
the size-dependent results to two origins: 1) surface energy and
surface stress and 2) coherency or compatibility stresses in two-
phase particles with coherent interfaces. Based on the adsorption
isotherm, Zhang and Ren developed a Gibbs approach for grain
boundary segregation in nanograined polycrystals16 and surface
segregation in nanoparticles17 and concluded that the stresses and
solute concentrations in nanostructures are size dependent.

Many numerical and experimental results have shown that the
electrochemical properties of nanoscale metallic materials are size
dependent.18–23 The breakdown potential of nanograined (8–28 nm)
and bulk nickel systematically increased from 1110 mV to 1540 mV
(Ag-AgCl reference electrode) with decreasing grain size to 8 nm.24

The oxidation potentials of Au25 and Pd26 nanoparticles were
reported much more negative relative to the value for bulk Au and
Pd, respectively. The presence of external mechanical, point defects
and solute atoms influences the electrode reactions. Despite having

the same chemical composition, the breakdown potential of the
sputtered nanocrystalline (grain size of approximately 25 nm) film of
304 stainless steel is approximately 850 mV higher than that of the
conventional material.27 Solute concentrations that are larger than
certain values may lead to selective corrosion or galvanic corrosion
of alloy materials, such as brass dezincification corrosion.28–32

Nanomaterials exhibit fascinating size-dependent properties have
stimulated extensive interests in the catalytic, energy storage,
batteries and corrosion researches. In order to describe the electrode
reactions in various materials, many researchers derived the classic
Butler-Volmer equation.33–37 Gutman38 and Ganser39 systematically
studied the influence of mechanics, and Yang40 considered the
effects of local stress and the radius of electrode surface curvature to
develop a generalized Butler-Volmer relationship. However, elec-
trochemical properties have different or reverse trend with de-
creasing diameter dependent on the synthetic methods and thermo-
dynamic states of nanostructures. In contrast to these mentioned
above, the corrosion resistance of the Cu90Ni10 alloy in neutral
Cl−-containing solution was reduced when the grain size decreased
to the nanoscale.41 Whereas, the Cu42 and Ag43 nanoparticles
showed an enhanced stability against anodic dissolution relative to
that of bulk Cu and Ag, respectively. In this paper, the size-
dependent electrochemical properties of nanoparticles and the
influences of size-dependent stresses and solute concentrations was
studied based on the thermodynamic equilibrium theory. Then
spherical nanoparticles of CuZn binary solid solution were analyzed
as examples.

Stresses and Solute Concentrations in Nanoparticles

Because of surface stress, free-standing nanomaterials subjected
to no external loads will relax spontaneously to reach the thermo-
dynamic equilibrium state, meeting energy minimization require-
ments, and introducing an initial deformation8,17 not present in their
strain-free bulk counterparts. Since the atoms within a very thin
layer near the surfaces experience a different local environment from
that of the atoms in bulk, the physical properties and mechanical
responses of surfaces and bulk counterparts will be distinct. Usually,
there are three common approaches to study the properties of
surfaces16,17: the sharp surface approach, the diffusive surface
approach and the interphase approach. Both diffusive surface and
interphase approaches treat surfaces as three-dimensional (3D)
surfaces. The interphase approach treats an interface as a thermo-
dynamic phase and usually chooses locations where the propertieszE-mail: qianping@ustb.edu.cn; yjsu@ustb.edu.cn
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no longer vary significantly with respect to the position. The
interphase surface has a finite volume (thickness) and may be
assigned thermodynamic properties in a normal way.

Here, a spherical model with a core coherently bonded to a
surface shell was employed. The 3D core and surface shell are both
assumed to be mechanically isotropic and homogeneous. Since the
surface thickness is small, a biaxial stress field with zero radial stress
(s s=x y and s = 0z ) was assumed in the surface shell, whereas with
a homogeneous triaxial stress field (s s s= =x y z) was assumed in
the core. Usually, various defects may be induced into nanoparticles
during fabrication processes. For simplicity, only the core, surface
shell, stresses and solute atoms in the core and surface shell are
considered; other defects are not analyzed here. Strain-free pure
metallic nanoparticle was taken as the reference state, in which
the core has an original radius of Rc0 and the surface shell has an
original thickness of Ω0.

Many researchers have studied the initial deformation, stresses and
solute segregations of nanomaterials. In particular, Zhang et al.
systematically studied the interactions between interfacial stress and
interfacial segregation in nanograined16 and nanoparticle17 materials.
Based on the referenced pure metallic core–shell spherical model of
nanoparticles discussed above, some second component atoms can be
introduced into the core and surface shell as solute atoms to study
binary solid solution nanoparticles. Obviously, these introduced solute
atoms in the metallic nanoparticles will lead to additional deforma-
tions and stress variations in the surface shell and core. The volume of
a solid solution can be described by a function of temperature,
hydrostatic stress and composition. The change in the total volume
can be expressed as the sum of volume changes in the core and
surface shell D = D + DV V V .c s Because the surface shell is coher-
ently bounded with the core, based on the continuum mechanics
theory, the tangential surface area strain should be equal to twice the
lattice strain in the core =D D2 ,A

A

a

a
s

s,0 0
where A

s,0
and ΔA

s
denote the

initial surface area and the change of surface areas, respectively; a
0

and Δa are the initial lattice constant and the change of lattice
constant in the core, respectively.16,17 Moreover, at the equilibrium
state, the energy minimization requirements will yield the generalized
capillary equation,5,44,45 which could describe the mechanical force
balance of spherical nanoparticles between the surface shell and core.

Based on these assumptions, Zhang et al.17 obtained the relation-
ships of stresses and solute concentrations in the surface shell and
core of binary solid solution nanoparticles, which are expressed as
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where ss
0 is the surface biaxial eigenstress8; σc and σs are the stresses

in the core and surface shell, respectively; Kc
s is the isothermal

solute-related bulk modulus; Ȳs
s and
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are the surface solute-
related uniaxial and biaxial Young’s modulus, respectively; and ν is
the surface solute-related Poisson’s ratio. Here, ¯ ( )= ¶ ¶ sV V nc
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s
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s

s are the partial molar volumes of solute atoms
in the core and surface shell, respectively, which are assumed to be
constant and independent of the solute mole number and hydrostatic
stress. Furthermore, nc
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s are the solute concentrations of the core and

surface shell, respectively. In these expressions, ̲=n V Vc c c,0 and
̲=n V Vs s s,0 are the mole numbers of solvent atoms in the core and

surface shell, respectively; V̲ c and V̲ s are the solute-free molar
volume of atoms in the core and surface shell, respectively; and
Vc,0 and Vs,0 are the volume of the core and surface shell in the
referenced strain-free pure nanoparticle, respectively. Obviously, from
Eqs. 1 and 3, the lattice strain and the stress in the surface shell and
core are both functions of particle radius and solute concentrations.
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where ε denotes the linear strain of the core or the tangential
direction linear strain of the surface, Ys is the biaxial Young’s
modulus8 in the surface shell, and Kc is the bulk modulus of the core.

For simplicity, the studied binary solid solution system was
assumed to be an ideal dilute solution system, and its elastic
constants and partial molar volumes are independent of the solute
concentrations. Therefore, these alloy atoms can be regarded as the
solute and exchanged between the core and surface shell. In this
case, the chemical potentials of the solute atoms in the core and
surface shell can be described by16,17,46
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and μ
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are the corresponding reference chemical
potentials of solute atoms in the core and surface shell, respectively;
R is the gas constant; and T is the absolute temperature. Here, sc ands2

3
s are the hydrostatic stress in the core and surface shell,

respectively, which are determined by ås s=
=

.
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The compres-

sion is assumed to be negative, whereas tension is assumed to be
positive. The compressive and tensile stresses have different effects
on atom diffusion behaviors. The density functional theory (DFT)
calculations47 confirmed that the solution energy of the H atom in
bcc-Fe increased with increasing 3-axis compressive strains,
whereas the solution energy of the H atom decreased with increasing
3-axis tensile strains.

In the thermodynamic equilibrium, the diffusion equilibrium of
solute atoms requires m m= .c

s
s
s Then, the solute concentrations in the

core and surface shell can be expressed as17

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

¯ ¯

¯
[ ]

m s s

s

=
D

=

= -
W

x
RT

V

RT
X

V

RT

X
V

RT R

exp exp exp

exp
2

9

c
s c

s
c
s

c
c
s c

s
c

c
s c

s
s

c

0

,0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

¯ ¯

( ¯ ¯ )
[ ]

m s s

m s

=
D - +

=
D + W +

x x
V V

RT

x
V R V

RT

exp
2 3

exp
2 3

10

s
s

c
s

s
c
s

c s
s

s

c
s

s
s c

s
c s

s

0

0 0 ,0

Journal of The Electrochemical Society, 2020 167 041501



where m m mD = - ,c
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is the solute concentration in the core of bulk

materials. For bulk materials, W Rc0 ,0 = 1, and the lattice stress in
the core approaches zero. According to Eqs. 2 and 10, the surface
stress and the solute concentration in the surface shell of bulk solid
solution reduces to
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The apparent solute concentration of nanoparticles is usually
defined as ( )= +x n n n ,s s s where = +n n ns

c
s

s
s and = +n n nc s

are the total mole numbers of solute and basis solvent atoms in the
nanoparticle, respectively. Then, according to the solute conserva-
tion, the expression of = +n n ns

c
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s
s can be written as17
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By solving Eqs. 2, 10 and 13 simultaneously, we can obtain the
solute concentrations and stresses of nanoparticles with given
apparent concentrations.

Size-dependent Electrochemical Properties of Nanoparticles

An elementary electrochemical reaction developed on the surface
of the metal electrode can be written as

[ ]« ++ -M M Ze 14Z

where M is the reduced state of a metal, MZ+ is the oxidized metal
state, e− is the electron charge, and Z is the number of transferred
electrons. Here, the anodic direction is considered to be forward, and
the cathodic direction is reverse. In the anodic direction, the metal
ions dissolved into the electrolyte from the electrode surface and a
current generated from the electrode to the electrolyte.

It is well known that there is a linear relationship between the
Gibbs free energy and the pressure P of solids. Because of low
compressibility, the solid volume V expanded into an exponential
series with respect to pressure can be mainly described by the zero-
order term. According to the Gibbs-Duhem equation,48 mS =N di i
- +SdT Vdp, the linear form of the chemical potential dependent on
pressure follows38
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where Vm is the partial molar volume of the corresponding
component, χ is the compressibility coefficient of the solid, and
DP is the change in the absolute value of the hydrostatic stress. In
contrast to an ideal gas system, solid materials have bonding forces
between their atoms. Gutman38 systematically discussed the com-
pression and tension effects of the initially nondeformed body
(stress-free) on the corresponding mechanochemical activity. The
authors concluded that hydrostatic stresses always increase the Gibbs
free energy of solids with a corresponding increase in the absolute
value, regardless of the direction of mechanical force (stretching or
compressing the solid).

Based on the assumption of an ideal dilute solution, the chemical
potential of solvent and solute atoms can be expressed by Raoult’s
law and Henry’s law, respectively. According to Eq. 15, the
electrochemical potential34,35,38,49 of the solvent and solute atoms
in the binary solid solution electrode surface, taking the surface

stress and solute concentration into account, can be expressed as
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B

∣ ∣ ̲ [ ]m m s f= + + +RT x V ZFln 2 3 17A A
s
s

s s
A

where μ is the reference chemical potential of the corresponding
stress-free pure metal atoms; f is the inner electrical potential of
the corresponding phase; F is the Faraday constant; V̲ s is the
partial molar volume of the corresponding atoms in the surface
shell, the superscript of A and B denoting the alloying solute and
basis solvent atoms, respectively; and ∣ ∣s2 3s is the absolute value
of hydrostatic stress in the surface shell. For a binary solid
solution, the solute concentration is =x x ,s

A
s
s whereas the solvent

concentration is = -x x1 .s
B

s
s Because the surface stress exists

only in the surface shell of the metal electrode, the surface stress
and solute concentration have no effect on the ions in the
electrolyte phase.

In the equilibrium state, the total Gibbs free energy change in
Eq. 14 ΔG = 0.34,35 Consequently, the corresponding equilibrium
potential34,35,38 of these electrode reactions developed on the surface
of binary solid solution can be written as
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where ( ) ( )f m m m= + -+ -Z ZFe M e MZ is the equilibrium potential
of the corresponding pure bulk materials neglecting their surface
stress. Then, the difference in the equilibrium potential between the
solvent and solute atoms in the surface shell of binary solid solution
can be expressed as
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As all we know, if

fD ¹ 0,e

AB
anodic polarization will occur in the

lower potential atom phase and cathodic polarization will occur in
the higher potential atom phase. That implies that the anodic
corrosion in the lower potential atom phase occurs more quickly,
while the corrosion in the higher potential atom phase is inhibited,
resulting in selective corrosion or galvanic corrosion. Many
researchers have systematically studied selective corrosions, such
as brass dezincification corrosion.28–32 Numerous theories have been
proposed that may ultimately be categorized into two groups: the
selective corrosion of the less noble constituent and dissolution
of both alloy constituents followed by redeposition of the more
noble species. Regardless of the selective corrosion or dissolution-
redeposition mechanism, the key point is that zinc preferentially
leached when dezincification occurred. Therefore, we can conclude
that if


fD > 0,e

AB
the alloying solute atoms tend to be dissolved

first, and if

fD < 0,e

AB
the basis solvent atoms tend to be dissolved

first. With increasing absolute value ∣ ∣

fD ,e

AB
the selective corrosion

process tends to be easier.
In the presence of mechanical deformation and alloying atoms,

there would be a shift in the chemical/electrochemical potential of
both components based on Eqs. 16 and 17, denoted as
( ∣ ∣ ̲ )s+RT x Vln 2 3 .s s s Moreover, the electrode polarization of
fD in an electrode reaction, equal to the variation in overpotential,

will lead to a change in the atomic potential in the metal by a fD and
the potential of the metal ions dissolved in the electrolyte by b f- D .
34,35 In most cases, α+ β = 1, where α and β are the transfer
coefficients of the electrochemical reaction. Correspondingly, the
activation energy barriers

 
DGf

a and
 

DGr
a of the electrode reaction

for the dissolved component are given as
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0 are the activation energy barriers of the
oxidation and reduction reactions of corresponding strain-free pure
bulk metal ignoring the surface stress, respectively, developed on the
equilibrium potential f ,e and η is the overpotential. Therefore, based
on the Butler-Volmer equation,34–37
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where ( )= = -Dj ZFKa ZFka exp G

RT0

a
0 is the exchange current

density of the strain-free pure bulk metal neglecting surface stress
when the electrode reaction developed on the equilibrium potential
fe (η = 0 and jf = jr = j

0
), K is the rate constant, k is the pre-

exponential factor, and DGa
0 is the forward or reverse activation

energy barrier. Therefore, the net corrosion current density of the
electrode reactions for the dissolved component of the solid solution
particle can be expressed by

  
= -J j j .f r Obviously, these electro-

chemical properties discussed above are a function of the surface
stress and component concentrations will also be size-dependent.

For bulk solid solution materials, the surface stress ss was
reduced to s ,s

bulk and the corresponding component concentration
of surface shell xs was reduced to X .s Consequently, substituting
them into Eqs. 18 and 24, we can obtain the equilibrium potential
and the current density of bulk solid solution electrode reactions.

Numerical Analysis

Here, binary solid solution particles of CuZn were introduced to
illustrate the size-dependent mechanical and electrochemical proper-
ties. These studies were conducted on CuZn particles, including
apparent Zn concentrations of 5%, 10%, 15%, 20% and 25%. Many
experimental results have confirmed that dezincification corrosion
will occur in the bulk single phase α brass when the concentration of
Zn is larger than 20%. Based on the binary solid solution
nanoparticle model discussed above, the elastic constants and partial
molar volumes are independent of the solute concentrations. For
simplicity, the biaxial eigenstress ss

0 = 1.38 GPa and biaxial surface
modulus Ys

s = 125.43 GPa of pure Cu, which came from our
previous work,49 were employed to study the CuZn particles. The
bulk triaxial Young’s modulus was obtained similar to the bulk
biaxial Young’s modulus.49 A representative domain of 8 × 8 × 8
unit cells with periodic boundary conditions in all three directions

was adopted to simulate the bulk material triaxial compressive and
tensile tests. The bulk triaxial Young’s modulus Kc

s = 138.52 GPa of
pure Cu was calculated from the second derivatives of the bulk strain
energy density with respect to the applied bulk strain. The solute
atoms of Zn have an hcp structure with an atomic radius of 1.38 Å,
lattice constants of a = 2.66 Å and c = 4.95 Å, a molar volume of
Vm

Zn = 9.13 × 10−6 m3 mol−1, and the surface stress of bulk Zn is
0.8 GPa. Based on the studies of Zhang,17 we made the following
assumptions for the binary CuZn solid solution studies: T = 300 K,
W0 = 1 nm, mD s

0 = 10 kJ mol−1, ̲ =V Vc m
Cu = 7.14 ×

10−6 m3 mol−1, ̲ ̲=V V1.1s c = 7.85 × 10−6 m3 mol−1, ¯ =V Vc
s

m
Zn =

9.13 × 10−6 m3 mol−1, and ¯ ¯=V V0.9s
s

c
s = 8.217 × 10−6 m3 mol−1.

Because theoretical calculations and experimental observations have
been confirmed and widely accepted, the thickness variations in
similar structure grain boundaries are within the range of 0.4 to
2.0 nm.50–53 Hence, the surface shell thickness of particles was
assumed to be 1 nm hereinafter. All these parameters and their
corresponding values used in the numerical analysis were summar-
ized in the Table I. The transfer coefficients of the electrochemical
reactions were assumed to be α = β = 0.5.

Size-dependent stresses and solute concentrations in the CuZn
nanoparticles.—Then, substituting the CuZn binary solid solution
properties listed above and solving Eqs. 2 and 13 simultaneously, the
stresses and solute concentrations of the surface shell and core can
be determined. The variations in the stresses in the surface and core
of CuZn binary solid solution nanoparticles vs the changing radius
and apparent Zn concentrations (5%, 10%, 15%, 20% and 25%) are
shown in Figs. 1a and 1b, respectively. These binary solid solution
particles exhibit the same trend. When the particle radius is
sufficiently large, the stress in the core approaches zero indepen-
dence of the apparent Zn concentrations, whereas the surface stress
approaches the bulk surface stress, which is dependent on the
apparent Zn concentrations of the CuZn binary solid solution.
Moreover, as the nanoparticle radius decreases, the stress in the
core and surface shell exhibits the opposite trend. With decreasing
nanoparticle radius, the relaxation magnitude and the stress in the
core increase, whereas the surface stress decreases remarkably.
Obviously, these apparent Zn concentrations have almost no effect
on the stress in the core, but the surface stresses of a given radius
increases with increasing apparent Zn concentrations from 5% to
25%.

The solute Zn concentrations in the surface shell xs
s and core xc

s

and their ratios (x xs
s

c
s) were plotted as a function of the nanoparticle

radius and the apparent Zn concentrations in Figs. 2a–2c, respec-
tively. The concentration distributions exhibit the same trend for all
CuZn particles. The Zn concentrations in the surface shell xs

s and
core xc

s both decreased with decreasing nanoparticle radius and
increased with increasing apparent Zn concentration. The ratios
x xs

s
c
s increased with decreasing nanoparticle radius and increased

with decreasing apparent Zn concentration. Thus, the difference in
the solute Zn concentrations between the surface shell and core
increased with decreasing CuZn nanoparticle radius, and their
magnitude increased with decreasing apparent Zn concentration.
This phenomenon occurs because the stresses in the surface shell and
core exhibit a different trend with decreasing nanoparticle radius.

Table I. The parameters and values used in the numerical analysis.

Parameters Values References Parameters Values References

ss
0/GPa 1.38 49 Kc

s/GPa 138.52

Y
s

s

/GPa 125.43 49 mD s
0/kJ/mol 10 17

V̲ c/m
3/mol 7.14 × 10−6

V̄c
s/m3/mol 9.13 × 10−6

V̲ s/m
3/mol 7.85 × 10−6

V̄s
s/m3/mol 8.217 × 10−6

Vm
Zn/m3/mol 9.13 × 10−6 W0/nm 1 17, 50–53

sbulk
Zn /GPa 0.8 T/K 300
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The larger the magnitude of the solute segregation in nanoparticles
is, the smaller the stress difference between the surface shell and
core.

Size-dependent electrochemical properties of CuZn nanoparti-
cles.—Here, the electrode reactions developed on the CuZn solid
solution particle surface were assumed to be « ++ -Zn Zn e22 and

« ++ -Cu Cu e22 for each component, and their standard electrode
potentials were assumed to be the equilibrium potential of the
corresponding bulk fe

Zn= −0.762 V and fe
Cu= 0.345 V (referenced

to the standard hydrogen electrode), respectively. Then, according to
Eq. 20, the difference in the equilibrium potential between the Cu
and Zn atoms in the surface shell of CuZn nanoparticles, taking into
account the surface stress and solute Zn segregation effects, are
shown in Fig. 3 as a function of the nanoparticle radius and the
apparent Zn concentration. The values of the equilibrium potential
difference decreased with decreasing nanoparticle radius but in-
creased with increasing apparent Zn concentration. The variation
range of the equilibrium potential difference decreased with in-
creasing apparent Zn concentration. When the particle radius was

less than 25 nm, the equilibrium potential difference between the Cu
and Zn atoms in the surface shell decreased sharply with decreasing
radius. When the particle radius was larger than 100 nm, the
equilibrium potential difference gradually tended to a constant value
depending on the apparent Zn concentration. In general, the equili-
brium potential difference between the solvent and solute atoms in the
surface shell can be regarded as the driving force of selective
corrosion on binary solid solutions.

According to Eqs. 18 and 19, the expression of the equilibrium
potential difference between the dissolved component of binary solid
solution particles and the pure bulk material of the corresponding
component, taking into account the surface stress and solute
segregation effects, can be given as

(∣ ∣ ∣ ∣) ̲

[ ]

  
f f f

s s
D = - = -

+ -RT x V

ZF

ln 2 3

25

e e

particle

e

bulk s s s
bulk

s

The variations in the equilibrium potential difference denoted by
Eq. 25 are shown in Fig. 4 as a function of the nanoparticle radius

Figure 1. Variations in the stresses in the surface shell (a) and the stresses in the core (b) as a function of the CuZn binary solid solution nanoparticle radius and
the apparent Zn concentration.

Figure 2. Variations in the Zn concentrations in the surface shell xs
s (a), the Zn concentrations in the core xc

s (b) and the Zn concentration ratios between
surface shell and core ( )x xs

s
c
s (c) as a function of the CuZn binary solid solution nanoparticle radius and the apparent Zn concentration.
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and the apparent Zn concentration. Obviously, these CuZn binary
solid solution particles exhibit the same trend, and the values of the
equilibrium potential difference increased with decreasing nanopar-
ticle radius but decreased with increasing apparent Zn concentration.

With decreasing equilibrium potential difference, the electroche-
mical activity of the corresponding component increased. Therefore,
with increasing apparent Zn concentration, the selective corrosion of
Zn in the nanoparticles tended to be enhanced. However, for a given
apparent Zn concentration, the selective corrosion of Zn decreased
with decreasing nanoparticle radius.

These electrochemical reactions developed on CuZn nanoparti-
cles were assumed with high anodic polarizations and the same
overpotential of η, in which the cathodic reaction rate were small
enough to be ignored and the corrosion current density approximate
to the anodic current density. Then, according to Eq. 23, the accurate
expression of the anodic current density ratio between the dissolved
component of the binary solid solution particles and the pure bulk
material of the corresponding component, taking into account the
surface stress and solute segregation effects, can be given as

⎛
⎝⎜

⎞
⎠⎟

{ (∣ ∣ ∣ ∣) ̲ }
[ ]




a s s

=
+ -j

j

RT x V

RT
exp

ln 2 3
26

f

particle

f

bulk
s s s

bulk
s

Because these solute atoms are uniformly distributed in the surface
shell of binary solid solutions, the surface occupancies of solute
atoms should approximate the corresponding surface concentration
of nanoparticles. Then, based on Eq. 26 and the surface occupancies
of the dissolved component in the nanoparticles xs, we can obtain the
ratio of the real anodic current density between the dissolved
component of the binary solid solution particles and the pure bulk
material of the corresponding component.

[ ]



=Ratio
j x

j
27real

f

particle
s

f

bulk

The variations in the ratio of the anodic current density and the
ratio of the real anodic current density given by Eqs. 26 and 27 are
shown in Figs. 5a and 5b as a function of the nanoparticle radius and
the apparent Zn concentration, respectively. Obviously, in these
CuZn particles, the values of the ratio of the anodic current density
and the ratio of the real anodic current density both decreased with
decreasing nanoparticle radius. Therefore, for a given apparent Zn
concentration, the selective corrosion of Zn decreased with de-
creasing nanoparticle radius, meaning that the stability was en-
hanced in their thermodynamic equilibrium state which qualitatively
consistent with the Cu42 and Ag43 nanoparticles. The tip-induced Cu
clusters on Au(111) surface with an average height of 0.6 nm and a
width of 3.2 nm were observed that the dissolution starts at about
+40 mV vs Cu/Cu2+.42 However, the electrochemically grown large
copper clusters readily dissolved at +10 mV vs Cu/Cu2+. The
dissolution potential of nanoscale tip-induced Cu cluster increased

Figure 3. Variations in the equilibrium potential difference between the Cu
and Zn atoms in the surface shell of CuZn binary solid solution nanoparticle
as a function of the nanoparticle radius and the apparent Zn concentration.

Figure 4. Variations in the equilibrium potential difference between the
dissolved Zn atoms in the CuZn nanoparticles and the pure bulk Zn as a
function of the nanoparticle radius and the apparent Zn concentration.

Figure 5. Variations in the ratio of the anodic current density (a) and the ratio of the real anodic current density (b) between the dissolved Zn atoms in the CuZn
nanoparticles and the pure bulk Zn as a function of the nanoparticle radius and the apparent Zn concentration.

Journal of The Electrochemical Society, 2020 167 041501



30 mV compared to that of large copper clusters, which consistent
well with our calculations that the equilibrium potential of CuZn
nanoparticles increased almost 25 mV compared to that of pure bulk
Zn. The anodic dissolution of silver particles on highly oriented
pyrolytic graphite (HOPG) electrode surfaces was investigated.43

The silver particles larger than 20 nm in diameter were dissolved
from a high cluster density of ∼109 cm−2 to zero in 10 min,
however, these silver clusters with subnanometer of 0.3–0.6 nm
were dissolved in an hour. Compared with these silver particles
larger than 20 nm in diameter, the dissolution rate of subnanometer
particles reduced to 1/6. Which is qualitatively consistent with
our calculations that the anodic current density of CuZn particles
reduced to 1/3 ∼ 1/2 with the radius decreased from 200 nm to 2 nm.
Moreover, the small clusters of copper can be arranged on gold
surfaces by the tip of a scanning tunneling microscope (STM) and
revealed a surprisingly high stability against anodic dissolution.54–56

The anodic current density ratio increased with increasing
apparent Zn concentration, implying that with increasing apparent
Zn concentration, the selective corrosion of Zn in the nanoparticles
tended to be enhanced. However, the ratio of the real anodic current
density increased with decreasing apparent Zn concentration, in-
dicating that with decreasing surface occupancies of the anodic
phase, the magnitude of selective corrosion damage will be
enhanced. These results were qualitatively consistent with brass
dezincification corrosions.28–32 When the particle radius was less
than 25 nm, the electrochemical properties of the CuZn binary solid
solution nanoparticles varied sharply with increasing radius. Then,
these values of nanoparticles gradually approached a constant that
depended on the apparent Zn concentration when the particle radius
was larger than 100 nm.

Conclusions

In the present work, the size-dependent electrochemical proper-
ties of nanoparticles and the effects of size-dependent stresses and
solute concentration distributions were discussed based on the
thermodynamic equilibrium theory. The spherical nanoparticles of
binary solid solution were modeled as a core–shell structure. Finally,
by combining the generalized capillary equation with the Gibbs-
Duhem equation and the Butler-Volmer equation, a size-dependent
model was obtained and can be used to simultaneously analyze
nanoparticle size, stresses, solute segregation and electrochemical
properties in solid solution nanoparticles.

Our numerical analysis showed that the CuZn binary solid
solution particles exhibit the same trend: as the nanoparticle radius
decreased, the surface stress decreased, whereas the stress in the core
and the solute segregation of Zn increased. The smaller the apparent
Zn concentration of nanoparticles was, the higher the magnitude of
Zn segregation. The larger the magnitude of the Zn segregation in
the nanoparticles was, the smaller the stress difference between the
surface shell and core. With decreasing CuZn nanoparticle radius,
the anodic current density decreased, whereas the equilibrium
potential increased, meaning that the stability was enhanced in their
thermodynamic equilibrium state. As the apparent Zn concentration
increased, the equilibrium potential decreased, but the anodic current
density and the equilibrium potential difference between the CuZn
nanoparticles’ components increased, implying that the nanoparticle
selective corrosion of Zn atoms tended to be enhanced. These results
were qualitatively consistent with some experimental observations.
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